Copied to
clipboard

G = C3×C232Q8order 192 = 26·3

Direct product of C3 and C232Q8

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C3×C232Q8, C6.1582+ 1+4, C232(C3×Q8), (C22×C6)⋊2Q8, C22⋊Q810C6, C22.4(C6×Q8), C24.19(C2×C6), (C6×Q8)⋊29C22, C6.61(C22×Q8), (C2×C6).363C24, (C2×C12).672C23, C23.43(C22×C6), C22.37(C23×C6), (C23×C6).18C22, (C22×C6).262C23, C2.10(C3×2+ 1+4), (C22×C12).451C22, C4⋊C44(C2×C6), C2.7(Q8×C2×C6), (C2×Q8)⋊5(C2×C6), (C2×C6).17(C2×Q8), (C3×C4⋊C4)⋊38C22, (C3×C22⋊Q8)⋊37C2, C22⋊C4.17(C2×C6), (C2×C22⋊C4).13C6, (C6×C22⋊C4).33C2, (C2×C4).30(C22×C6), (C22×C4).68(C2×C6), (C3×C22⋊C4).151C22, SmallGroup(192,1432)

Series: Derived Chief Lower central Upper central

C1C22 — C3×C232Q8
C1C2C22C2×C6C2×C12C3×C22⋊C4C3×C22⋊Q8 — C3×C232Q8
C1C22 — C3×C232Q8
C1C2×C6 — C3×C232Q8

Generators and relations for C3×C232Q8
 G = < a,b,c,d,e,f | a3=b2=c2=d2=e4=1, f2=e2, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, ebe-1=fbf-1=bd=db, fcf-1=cd=dc, ce=ec, de=ed, df=fd, fef-1=e-1 >

Subgroups: 386 in 242 conjugacy classes, 162 normal (10 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, C6, C6, C6, C2×C4, C2×C4, Q8, C23, C23, C12, C2×C6, C2×C6, C2×C6, C22⋊C4, C4⋊C4, C22×C4, C2×Q8, C24, C2×C12, C2×C12, C3×Q8, C22×C6, C22×C6, C2×C22⋊C4, C22⋊Q8, C3×C22⋊C4, C3×C4⋊C4, C22×C12, C6×Q8, C23×C6, C232Q8, C6×C22⋊C4, C3×C22⋊Q8, C3×C232Q8
Quotients: C1, C2, C3, C22, C6, Q8, C23, C2×C6, C2×Q8, C24, C3×Q8, C22×C6, C22×Q8, 2+ 1+4, C6×Q8, C23×C6, C232Q8, Q8×C2×C6, C3×2+ 1+4, C3×C232Q8

Smallest permutation representation of C3×C232Q8
On 48 points
Generators in S48
(1 19 7)(2 20 8)(3 17 5)(4 18 6)(9 28 21)(10 25 22)(11 26 23)(12 27 24)(13 47 34)(14 48 35)(15 45 36)(16 46 33)(29 39 42)(30 40 43)(31 37 44)(32 38 41)
(1 3)(2 10)(4 12)(5 7)(6 24)(8 22)(9 11)(13 40)(14 16)(15 38)(17 19)(18 27)(20 25)(21 23)(26 28)(29 31)(30 34)(32 36)(33 35)(37 39)(41 45)(42 44)(43 47)(46 48)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 40)(14 37)(15 38)(16 39)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 33)(30 34)(31 35)(32 36)(41 45)(42 46)(43 47)(44 48)
(1 11)(2 12)(3 9)(4 10)(5 21)(6 22)(7 23)(8 24)(13 38)(14 39)(15 40)(16 37)(17 28)(18 25)(19 26)(20 27)(29 35)(30 36)(31 33)(32 34)(41 47)(42 48)(43 45)(44 46)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(1 32 3 30)(2 31 4 29)(5 43 7 41)(6 42 8 44)(9 36 11 34)(10 35 12 33)(13 28 15 26)(14 27 16 25)(17 40 19 38)(18 39 20 37)(21 45 23 47)(22 48 24 46)

G:=sub<Sym(48)| (1,19,7)(2,20,8)(3,17,5)(4,18,6)(9,28,21)(10,25,22)(11,26,23)(12,27,24)(13,47,34)(14,48,35)(15,45,36)(16,46,33)(29,39,42)(30,40,43)(31,37,44)(32,38,41), (1,3)(2,10)(4,12)(5,7)(6,24)(8,22)(9,11)(13,40)(14,16)(15,38)(17,19)(18,27)(20,25)(21,23)(26,28)(29,31)(30,34)(32,36)(33,35)(37,39)(41,45)(42,44)(43,47)(46,48), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,40)(14,37)(15,38)(16,39)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,33)(30,34)(31,35)(32,36)(41,45)(42,46)(43,47)(44,48), (1,11)(2,12)(3,9)(4,10)(5,21)(6,22)(7,23)(8,24)(13,38)(14,39)(15,40)(16,37)(17,28)(18,25)(19,26)(20,27)(29,35)(30,36)(31,33)(32,34)(41,47)(42,48)(43,45)(44,46), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,32,3,30)(2,31,4,29)(5,43,7,41)(6,42,8,44)(9,36,11,34)(10,35,12,33)(13,28,15,26)(14,27,16,25)(17,40,19,38)(18,39,20,37)(21,45,23,47)(22,48,24,46)>;

G:=Group( (1,19,7)(2,20,8)(3,17,5)(4,18,6)(9,28,21)(10,25,22)(11,26,23)(12,27,24)(13,47,34)(14,48,35)(15,45,36)(16,46,33)(29,39,42)(30,40,43)(31,37,44)(32,38,41), (1,3)(2,10)(4,12)(5,7)(6,24)(8,22)(9,11)(13,40)(14,16)(15,38)(17,19)(18,27)(20,25)(21,23)(26,28)(29,31)(30,34)(32,36)(33,35)(37,39)(41,45)(42,44)(43,47)(46,48), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,40)(14,37)(15,38)(16,39)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,33)(30,34)(31,35)(32,36)(41,45)(42,46)(43,47)(44,48), (1,11)(2,12)(3,9)(4,10)(5,21)(6,22)(7,23)(8,24)(13,38)(14,39)(15,40)(16,37)(17,28)(18,25)(19,26)(20,27)(29,35)(30,36)(31,33)(32,34)(41,47)(42,48)(43,45)(44,46), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,32,3,30)(2,31,4,29)(5,43,7,41)(6,42,8,44)(9,36,11,34)(10,35,12,33)(13,28,15,26)(14,27,16,25)(17,40,19,38)(18,39,20,37)(21,45,23,47)(22,48,24,46) );

G=PermutationGroup([[(1,19,7),(2,20,8),(3,17,5),(4,18,6),(9,28,21),(10,25,22),(11,26,23),(12,27,24),(13,47,34),(14,48,35),(15,45,36),(16,46,33),(29,39,42),(30,40,43),(31,37,44),(32,38,41)], [(1,3),(2,10),(4,12),(5,7),(6,24),(8,22),(9,11),(13,40),(14,16),(15,38),(17,19),(18,27),(20,25),(21,23),(26,28),(29,31),(30,34),(32,36),(33,35),(37,39),(41,45),(42,44),(43,47),(46,48)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,40),(14,37),(15,38),(16,39),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,33),(30,34),(31,35),(32,36),(41,45),(42,46),(43,47),(44,48)], [(1,11),(2,12),(3,9),(4,10),(5,21),(6,22),(7,23),(8,24),(13,38),(14,39),(15,40),(16,37),(17,28),(18,25),(19,26),(20,27),(29,35),(30,36),(31,33),(32,34),(41,47),(42,48),(43,45),(44,46)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(1,32,3,30),(2,31,4,29),(5,43,7,41),(6,42,8,44),(9,36,11,34),(10,35,12,33),(13,28,15,26),(14,27,16,25),(17,40,19,38),(18,39,20,37),(21,45,23,47),(22,48,24,46)]])

66 conjugacy classes

class 1 2A2B2C2D···2I3A3B4A···4L6A···6F6G···6R12A···12X
order12222···2334···46···66···612···12
size11112···2114···41···12···24···4

66 irreducible representations

dim1111112244
type+++-+
imageC1C2C2C3C6C6Q8C3×Q82+ 1+4C3×2+ 1+4
kernelC3×C232Q8C6×C22⋊C4C3×C22⋊Q8C232Q8C2×C22⋊C4C22⋊Q8C22×C6C23C6C2
# reps131226244824

Matrix representation of C3×C232Q8 in GL6(𝔽13)

900000
090000
003000
000300
000030
000003
,
100000
010000
001000
00121200
0010120
000001
,
1200000
0120000
001000
000100
0010120
00120012
,
100000
010000
0012000
0001200
0000120
0000012
,
12110000
110000
00121100
000100
0001201
000110
,
650000
370000
0010110
000011
0000120
000110

G:=sub<GL(6,GF(13))| [9,0,0,0,0,0,0,9,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,3],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,12,1,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,1,12,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[12,1,0,0,0,0,11,1,0,0,0,0,0,0,12,0,0,0,0,0,11,1,12,1,0,0,0,0,0,1,0,0,0,0,1,0],[6,3,0,0,0,0,5,7,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,11,1,12,1,0,0,0,1,0,0] >;

C3×C232Q8 in GAP, Magma, Sage, TeX

C_3\times C_2^3\rtimes_2Q_8
% in TeX

G:=Group("C3xC2^3:2Q8");
// GroupNames label

G:=SmallGroup(192,1432);
// by ID

G=gap.SmallGroup(192,1432);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-2,-2,672,701,2102,555,520,1571]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^3=b^2=c^2=d^2=e^4=1,f^2=e^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,e*b*e^-1=f*b*f^-1=b*d=d*b,f*c*f^-1=c*d=d*c,c*e=e*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^-1>;
// generators/relations

׿
×
𝔽