direct product, metabelian, nilpotent (class 2), monomial, 2-elementary
Aliases: C3×C23⋊2Q8, C6.1582+ 1+4, C23⋊2(C3×Q8), (C22×C6)⋊2Q8, C22⋊Q8⋊10C6, C22.4(C6×Q8), C24.19(C2×C6), (C6×Q8)⋊29C22, C6.61(C22×Q8), (C2×C6).363C24, (C2×C12).672C23, C23.43(C22×C6), C22.37(C23×C6), (C23×C6).18C22, (C22×C6).262C23, C2.10(C3×2+ 1+4), (C22×C12).451C22, C4⋊C4⋊4(C2×C6), C2.7(Q8×C2×C6), (C2×Q8)⋊5(C2×C6), (C2×C6).17(C2×Q8), (C3×C4⋊C4)⋊38C22, (C3×C22⋊Q8)⋊37C2, C22⋊C4.17(C2×C6), (C2×C22⋊C4).13C6, (C6×C22⋊C4).33C2, (C2×C4).30(C22×C6), (C22×C4).68(C2×C6), (C3×C22⋊C4).151C22, SmallGroup(192,1432)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C2 — C22 — C2×C6 — C2×C12 — C3×C22⋊C4 — C3×C22⋊Q8 — C3×C23⋊2Q8 |
Generators and relations for C3×C23⋊2Q8
G = < a,b,c,d,e,f | a3=b2=c2=d2=e4=1, f2=e2, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, ebe-1=fbf-1=bd=db, fcf-1=cd=dc, ce=ec, de=ed, df=fd, fef-1=e-1 >
Subgroups: 386 in 242 conjugacy classes, 162 normal (10 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, C6, C6, C6, C2×C4, C2×C4, Q8, C23, C23, C12, C2×C6, C2×C6, C2×C6, C22⋊C4, C4⋊C4, C22×C4, C2×Q8, C24, C2×C12, C2×C12, C3×Q8, C22×C6, C22×C6, C2×C22⋊C4, C22⋊Q8, C3×C22⋊C4, C3×C4⋊C4, C22×C12, C6×Q8, C23×C6, C23⋊2Q8, C6×C22⋊C4, C3×C22⋊Q8, C3×C23⋊2Q8
Quotients: C1, C2, C3, C22, C6, Q8, C23, C2×C6, C2×Q8, C24, C3×Q8, C22×C6, C22×Q8, 2+ 1+4, C6×Q8, C23×C6, C23⋊2Q8, Q8×C2×C6, C3×2+ 1+4, C3×C23⋊2Q8
(1 19 7)(2 20 8)(3 17 5)(4 18 6)(9 28 21)(10 25 22)(11 26 23)(12 27 24)(13 47 34)(14 48 35)(15 45 36)(16 46 33)(29 39 42)(30 40 43)(31 37 44)(32 38 41)
(1 3)(2 10)(4 12)(5 7)(6 24)(8 22)(9 11)(13 40)(14 16)(15 38)(17 19)(18 27)(20 25)(21 23)(26 28)(29 31)(30 34)(32 36)(33 35)(37 39)(41 45)(42 44)(43 47)(46 48)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 40)(14 37)(15 38)(16 39)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 33)(30 34)(31 35)(32 36)(41 45)(42 46)(43 47)(44 48)
(1 11)(2 12)(3 9)(4 10)(5 21)(6 22)(7 23)(8 24)(13 38)(14 39)(15 40)(16 37)(17 28)(18 25)(19 26)(20 27)(29 35)(30 36)(31 33)(32 34)(41 47)(42 48)(43 45)(44 46)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(1 32 3 30)(2 31 4 29)(5 43 7 41)(6 42 8 44)(9 36 11 34)(10 35 12 33)(13 28 15 26)(14 27 16 25)(17 40 19 38)(18 39 20 37)(21 45 23 47)(22 48 24 46)
G:=sub<Sym(48)| (1,19,7)(2,20,8)(3,17,5)(4,18,6)(9,28,21)(10,25,22)(11,26,23)(12,27,24)(13,47,34)(14,48,35)(15,45,36)(16,46,33)(29,39,42)(30,40,43)(31,37,44)(32,38,41), (1,3)(2,10)(4,12)(5,7)(6,24)(8,22)(9,11)(13,40)(14,16)(15,38)(17,19)(18,27)(20,25)(21,23)(26,28)(29,31)(30,34)(32,36)(33,35)(37,39)(41,45)(42,44)(43,47)(46,48), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,40)(14,37)(15,38)(16,39)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,33)(30,34)(31,35)(32,36)(41,45)(42,46)(43,47)(44,48), (1,11)(2,12)(3,9)(4,10)(5,21)(6,22)(7,23)(8,24)(13,38)(14,39)(15,40)(16,37)(17,28)(18,25)(19,26)(20,27)(29,35)(30,36)(31,33)(32,34)(41,47)(42,48)(43,45)(44,46), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,32,3,30)(2,31,4,29)(5,43,7,41)(6,42,8,44)(9,36,11,34)(10,35,12,33)(13,28,15,26)(14,27,16,25)(17,40,19,38)(18,39,20,37)(21,45,23,47)(22,48,24,46)>;
G:=Group( (1,19,7)(2,20,8)(3,17,5)(4,18,6)(9,28,21)(10,25,22)(11,26,23)(12,27,24)(13,47,34)(14,48,35)(15,45,36)(16,46,33)(29,39,42)(30,40,43)(31,37,44)(32,38,41), (1,3)(2,10)(4,12)(5,7)(6,24)(8,22)(9,11)(13,40)(14,16)(15,38)(17,19)(18,27)(20,25)(21,23)(26,28)(29,31)(30,34)(32,36)(33,35)(37,39)(41,45)(42,44)(43,47)(46,48), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,40)(14,37)(15,38)(16,39)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,33)(30,34)(31,35)(32,36)(41,45)(42,46)(43,47)(44,48), (1,11)(2,12)(3,9)(4,10)(5,21)(6,22)(7,23)(8,24)(13,38)(14,39)(15,40)(16,37)(17,28)(18,25)(19,26)(20,27)(29,35)(30,36)(31,33)(32,34)(41,47)(42,48)(43,45)(44,46), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,32,3,30)(2,31,4,29)(5,43,7,41)(6,42,8,44)(9,36,11,34)(10,35,12,33)(13,28,15,26)(14,27,16,25)(17,40,19,38)(18,39,20,37)(21,45,23,47)(22,48,24,46) );
G=PermutationGroup([[(1,19,7),(2,20,8),(3,17,5),(4,18,6),(9,28,21),(10,25,22),(11,26,23),(12,27,24),(13,47,34),(14,48,35),(15,45,36),(16,46,33),(29,39,42),(30,40,43),(31,37,44),(32,38,41)], [(1,3),(2,10),(4,12),(5,7),(6,24),(8,22),(9,11),(13,40),(14,16),(15,38),(17,19),(18,27),(20,25),(21,23),(26,28),(29,31),(30,34),(32,36),(33,35),(37,39),(41,45),(42,44),(43,47),(46,48)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,40),(14,37),(15,38),(16,39),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,33),(30,34),(31,35),(32,36),(41,45),(42,46),(43,47),(44,48)], [(1,11),(2,12),(3,9),(4,10),(5,21),(6,22),(7,23),(8,24),(13,38),(14,39),(15,40),(16,37),(17,28),(18,25),(19,26),(20,27),(29,35),(30,36),(31,33),(32,34),(41,47),(42,48),(43,45),(44,46)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(1,32,3,30),(2,31,4,29),(5,43,7,41),(6,42,8,44),(9,36,11,34),(10,35,12,33),(13,28,15,26),(14,27,16,25),(17,40,19,38),(18,39,20,37),(21,45,23,47),(22,48,24,46)]])
66 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2I | 3A | 3B | 4A | ··· | 4L | 6A | ··· | 6F | 6G | ··· | 6R | 12A | ··· | 12X |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 3 | 3 | 4 | ··· | 4 | 6 | ··· | 6 | 6 | ··· | 6 | 12 | ··· | 12 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 1 | 1 | 4 | ··· | 4 | 1 | ··· | 1 | 2 | ··· | 2 | 4 | ··· | 4 |
66 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 |
type | + | + | + | - | + | |||||
image | C1 | C2 | C2 | C3 | C6 | C6 | Q8 | C3×Q8 | 2+ 1+4 | C3×2+ 1+4 |
kernel | C3×C23⋊2Q8 | C6×C22⋊C4 | C3×C22⋊Q8 | C23⋊2Q8 | C2×C22⋊C4 | C22⋊Q8 | C22×C6 | C23 | C6 | C2 |
# reps | 1 | 3 | 12 | 2 | 6 | 24 | 4 | 8 | 2 | 4 |
Matrix representation of C3×C23⋊2Q8 ►in GL6(𝔽13)
9 | 0 | 0 | 0 | 0 | 0 |
0 | 9 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 0 |
0 | 0 | 0 | 0 | 0 | 3 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 12 | 12 | 0 | 0 |
0 | 0 | 1 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 12 | 0 |
0 | 0 | 12 | 0 | 0 | 12 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
12 | 11 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 11 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 1 |
0 | 0 | 0 | 1 | 1 | 0 |
6 | 5 | 0 | 0 | 0 | 0 |
3 | 7 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 11 | 0 |
0 | 0 | 0 | 0 | 1 | 1 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 1 | 1 | 0 |
G:=sub<GL(6,GF(13))| [9,0,0,0,0,0,0,9,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,3],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,12,1,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,1,12,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[12,1,0,0,0,0,11,1,0,0,0,0,0,0,12,0,0,0,0,0,11,1,12,1,0,0,0,0,0,1,0,0,0,0,1,0],[6,3,0,0,0,0,5,7,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,11,1,12,1,0,0,0,1,0,0] >;
C3×C23⋊2Q8 in GAP, Magma, Sage, TeX
C_3\times C_2^3\rtimes_2Q_8
% in TeX
G:=Group("C3xC2^3:2Q8");
// GroupNames label
G:=SmallGroup(192,1432);
// by ID
G=gap.SmallGroup(192,1432);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,-2,-2,672,701,2102,555,520,1571]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^3=b^2=c^2=d^2=e^4=1,f^2=e^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,e*b*e^-1=f*b*f^-1=b*d=d*b,f*c*f^-1=c*d=d*c,c*e=e*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^-1>;
// generators/relations